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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-3

AN EXAMINATION OF METHODS OF BUFFETING ANATYSTIS BASED ON
EXPERIMENTS WITH WINGS OF VARYING STIFFNESS

By A. Gerald Rainey and Thomas A. Byrdsong
SUMMARY

An examination of the validity of some of the assumptions used in
the analysis of buffeting loads has been made by means of wind-tunnel
tests of models differing in stiffness. A linear analysis predicts buf-
feting loads which are high by about 25 percent. This difference may be
associated with a relieving effect which causes flexible wings to gen-
erate smaller buffeting forces than a more rigid wing. A prediction
based on aerodyhamic damping only, which apparently contained compen-
sating inaccuracies, provided values of buffeting loads which were closer
to the measured values than those predicted by the more complete analysis
including both structural and aerodynamic damping.

INTRODUCTION

Rceent applications of the methods of generalized harmonic analysis
to the problems of airplane buffeting, such as those contained in refer-
ences 1 to 6, have demonstrated the usefulness of these methods in making
a rational approach to the solution of these problems. For example,
Liepmann in reference 3 has indicated from dimensional considerations
that for certain conditions the buffeting loads experienced by an air-
plane should vary by the square root of the dynamic pressure instead of
the direct variation found for steady loads. This result arises because
of the importance of aerodynamic damping in limiting the response of the
airplane to the fluctuating forces which cause buffeting. Similarly,
dimensional analysis indicates that, if wings of different stiffness were
subjected to the same aerodynamic buffeting conditions, the deflections
of the wing would vary inversely as the square root of the stiffness.

The foregoing results are based on a somewhat simplified and ideal-
ized representation of the complex phenomenon of buffeting. The aero-
dynamic damping used is considered to be linear, that is, the coefficient
of damping is a constant for all amplitudes of oscillation. When it is



recalled that buffeting occurs at conditions where steady force coeffi-
cients are nonlinear, it seems unlikely that the assumption of linear
characteristics during buffeting would be valid. In addition to the
assumption of a constant coefficient of aerodynamic damping for various
amplitudes of oscillation, the analyses presented in references 1 to 6
assume that the fluctuating forces which cause buffeting can be treated .
as external forces which are not affected by the resulting oscillations.
Agein, it seems quite possible that the separated flow which produces
these driving forces could be affected by the motion of the wing. In
the present investigation, an attempt has been made to shed further
light on the question of the validity of these two assumptions.

The experiment was designed so that the many parameters which are
of importance in buffeting, such as Mach number, Reynolds number, and
reduced frequency, were held essentially constant while, for the same
conditions, different amplitudes of response could be obtained. These
conditions were accomplished by employing three cantilever-mounted
semispan-wing models having identical geometry but constructed of steel,
aluminum, and magnesium alloys. Use of the three different materials
provided a range of stiffness of about 4.6 to 1. That is, for the same
static load the magnesium wing would deflect about four times as much as
the steel wing or, if the assumptions used in buffeting analyses are
valid, the magnesium wing would deflect during buffeting about twice as
much as the steel wing. An example of such an analysis is given in an
appendix by Don D. Davis, Jr., of the Langley Research Center, which
presents the derivation of the equations governing the buffet response
of a wing.

The purpose of this paper is to present the results of measurements
of the buffeting loads on these three wings and to interpret the results
in terms of the assumptions involved in the application of generalized
harmonic analysis to the study of buffeting loads.

SYMBOLS
,A(a))l2 square of absolute value of system admittance
LA] matrix of flexibility influence coefficients
CLa,l first-mode generalized lift-curve slope for damping

component of aerodynamic force due to the wing vibration,
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m(y)

generalized normal-force coefficient for first-mode
vibration, N [qS;

chord at any station y, ft

average chord, ft

elastic strain energy, 1lb-ft

effective value of aerodynamic damping coefficient

frequency of bending mode

structural damping coefficient in first bending mode

reduced fregquency, we/2V

constant relating the damping component of local pressure
differential due to wing vibration to local angle of

attack (in radians) and free-stream dynamic pressure

generalized damping constant for first-mode wing vibration,
1b-sec/ft

semispan of wing, ft
diagonal inertia matrix for wing

. . 7 ~e ' ) L& -~ mama A
effective moment (for first-mode vibvration) of mass cutboard

1
of point yg, _/ (y - Yg>m(Y)W1(Y) dy, slug-ft
Vg

generalized wing mass for nth-mode vibration,

z‘ %(@é”)g or fi m(y)wne(y) dy, slugs

mass of an element of wing, slugs

spanwise mass distribution, slugs/ft




Ny time-dependent generalized (for first-mode vibration) buffet
. : A (1)
force acting on wing, PrSp®Pm > 1P
{P} column matrix representing a set of static loads applied
to wing
Pn forces, other than inertia and elastic, that act on an

element m

App local pressure difference (between bottom and top surfaces

of wing) that excites the buffet vibration
q free-stream dynamic pressure, 1b/sq 't
Ty time-dependent displacement of wing element for which

q)(n) =1

(1)
S1 weighted wing area for first-mode bending, 5y Pm or
1
2f c(y)wy(y) dy, sq ft
0
. (1))?
So weighted wing area for first-mode vibration, Sm\Pm
1 m
or 2f c(y)n?(y) ay, sq £t
0

Sm area of mth element of wing, sq ft
T kinetic energy, 1lb-ft
t time, sec
EU] dynamic matrix for wing
A free-stream velocity, ft/sec
wh(y) deflection of wing elastic axis normalized to unit deflection

at wing tip

Yy spanwise coordinate
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(n)
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Pm

spanwise strain-gage location, ft

‘/;1 (v - Vg )m(ylw, (v) day

. : g
a spanwise center of mass,

, Tt
1

f n(y)w2(y) dy
-1

column matrix representing a set of vertical displacements
of wing

deflection of an element of wing

time-dependent displacement of mth wing element, ft
constants

angle of attack, deg or radians

phase angle by which displacement lags the force

aerodynamic damping coefficient in first bending mode,
C qdS
L,1%72

material density, slugs/cu ft

root-mean-square bending moment, in-1b

power spectral density of generalized normal force,
(lb)%/cycle/sec

power spectral density of time-dependent displacement of
wing element for which m(n) =1

column matrix representing a set of normalized deflections

normalized deflection of mth wing element for wing vibration
in nth normal mode



w circular frequency, 2xf, radians/sec

Subscripts:

A refers to aluminum wing

M refers to magnesium wing

S refers to steel wing

n refers to natural mode, where n 1is any integer
m refers to element of wing

1 refers to first mode

Dots over a symbol denote differentiation with respect to time.

APPARATUS AND TECHNIQUE

Wind Tunnel

The tests were made in the Langley 2- by L4-foot flutter research
tunnel. This tunnel is a conventional closed-throat, single-return
wind tunnel capable of operation in either air or Freon-12 at stagna-
tion pressures from 1 atmosphere down to approximately 1/10 atmosphere.
The experiments reported herein were ccnducted in air at approximately
atmospheric stagnation pressure.

Model Characteristics

The models used in this investigation were semispan, cantilever-
mounted wings. FEach had NACA 65A004 airfoil sections, was unswept about
the midchord, had an aspect ratio of 3.8, and had a taper ratio of 0.225.
A sketch of the models giving pertinent dimensions 1s shown in figure 1.
The models were constructed of steel, aluminum alloy, and magnesium alloy.
The first natural bending frequencies of the steel, magnesium, and alum-
inum models were 117.9 cycles per second, 119.9 cycles per second, and
126.8 cycles per second, respectively.

The structural damping coefficients for each of the wing models
were obtained from the rate of decay of free vibrations in still air.
Figure 2 shows the variation of structural damping in still air with
root-mean-square bending moment. The three sets of values for the steel
model were obtained from separate installations of the model in its
mount and indicate a possible effect of root clamping on the effective
structural damping. Structural damping coefficients were also obtained
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for the steel model subjected to a preload simulating the static aero-
dynamic loading present during the buffeting tests. It was found that
there was no gppreciable change in structural damping due to the preload.

Instrumentation

A schematic diagram of the instrumentation used is shown in fig-
ure 3. A resistance-wire strain-gage bridge was attached to the surface
near the root of each of the cantilever-mounted models. The strain-
gage bridge was arranged to be sensitive to bending strains only. A
balance box was used for supplying direct current to the bridge. The
output of the bridge was amplified by two linear amplifiers connected
in series. The amplified signal was then passed through a vacuum-bulb
thermocouple which converted the voltages proportional to the fluctu-~
ating strains into direct current proportional to the mean-square value
of the fluctuating strains. This direct-current output of the thermo-
couple was read on & heavily damped microammeter. This system had a
flat response within about 5 percent between frequencies of about 5 cycles
per second and 5,000 cycles per second. The low-frequency cutoff of the
linear amplifiers effectively subtracted the static value of the strain
from the signal; that is, the strain due to the static angle of attack
was removed and the mean-square values measured refer to fluctuations
in strain falling in the frequency band between about 5 cycles per sec-
ond and 5,000 cycles per second.

The reading of the microammeter was converted to a root-mean-square
value of the bending moment by a system of calibrations. The relation-
ship between the bending moment applied to the models and the voltage
out of the strain-gasse bridge wac determined by applying a known static
bending moment and reading the corresponding bridge output or unbalance
on & self-balancing potentiometer. The relationship between voltage
applied to the input of the linear amplifiers and current cut of the
thermocouple was determined by applying a known value of alternating
voltage to the input of the linear amplifiers and reading the corre-~

sponding direct-current output of the thermocouple on the microammeter.

In order to check the overall accuracy of the system, an electromag-
netic shaker was used to drive the models at their first natural fre-
quency. The root-mean-square bending moment and tip amplitude were
measured. The root-mean-square bending moments calculated from the meas-
ured tip amplitudes are compared with the measured root-mean~-square
bending moments for the aluminum-alloy model in figure 4. The agree-
ment between the measured and calculated values is considered to be good.




Procedure

The linear amplifier and thermocouple were calibrated before and
after each test to minimize the effects of a small change in sensitivity.
The tunnel-off instrument noise level was also read before and after
each run so that it could be extracted from the data as a tare.

With the model set at the desired angle of attack, the tunnel veloc-
ity was increased until the microammeter indicated at least twice the
tunnel-off instrument noise reading. The microammeter reading and tunnel
conditions were then recorded. These observations were repeated at sev-
eral velocities. The tests covered a range of velocities from 160 to
640 feet per second and a range of angles of attack from 0° to 20°.

Shown in figure 5 are the variations with veldcity of Mach number,
Reynolds number based on average chord, density, and reduced frequency
based on average chord and the first bending frequency.

METHOD OF ANALYSIS

Since the purpose of this investigation is to examine the validity
of some of the assumptions used in the analysis of buffeting loads, it
would seem appropriate to state these assumptions and to present the
pertinent results of these analyses. The development of these relation-
ships has been presented in references 1 to 6 and the particular relation-
ship of interest in this investigation is developed in the appendix.

The treatment of buffeting as the response of a linear single-degree-
of -freedom system to a stationary random excitation has been discussed in
references 1 to 6. These assumptions lead to the following expression
(eq. (AlO)) for the mean-square bending moment acting at a station near
the root of the wing:

(1)

where 7y 1s the coefficient of aerodynamic damping in the first bending
mode and g; 1is the coefficient of structural damping in the first
bending mode. The term yml has the dimensions of length and can be

thought of as the distance from the strain-gage station to a spanwise
center of mass which will be the same for the three models considered
in the present investigation. The term @N(wl) represents the value of

the power spectral density of the exciting force at the fundamental
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bending frequency and has the units of (force)2—second. The excitation
will also be assumed to be the same for the three models at a given
angle of attack and velocity. This is one of the assumptions that can
be examined by the methods of the present investigation.

Thus, for models that differ only in the material of construction

02 o« (2)
71 + %‘gl
or
@)
0« - (3)
7 38

Generally, the analysis of buffeting has been used to determine the rela-
tionship between the buffeting loads measured on one model and those to
be expected on another model or on the full-scale airplane. For the con-
ditions of the present investigation equation (3) can be used to give

the following: 2
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where the right-hand side of equations (4) may be thought of as repre-
senting the calculated scale factor required to convert the measured
loads on the steel model (subscript S) to the predicted loads on the
magnesium (subscript M) or aluminum model (subscript A).

N
~
f=
~—

<

In order to obtain values of the calculated scale factor, it will
be necessary to evaluate the aerodynamic damping coefficient 14 which

is defined as
kF
e
7y = — )
ky
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where k is a mass ratio parameter, k; is the reduced frequency based
on the first natural frequency, and F, 1is, as defined in reference T,
an effective section derivative having the same form as Theodorsen's
circulation function F(k) (see ref. 8). Values of F., have been meas-
ured and are presented in reference 7 as functions of angle of attack
and reduced frequency for two wings oscillating in the first bending
mode. Values of the calculated scale factor have been determined for
the models used in the present investigation by using measured values of
the natural frequency and structural damping and values of F, from
reference 7.

Another form of the calculated scale factor is obtained from equa-
tion (h) when the structural damping is assumed to be small relative to
the aerodynamic damping. For this case the scale factor is

oM _ TaM [P
% P, | Ps
> (6)
Oa _ LA [PA
9% ®,5 VPs

where p 1is the density of the material of construction. This expres-
sion results in s single number for each of the models, regardless of
test conditions. These values are

35 = O.h90
op
U—S = 0.653

If it is assumed that the aerodynamic damping is small compared
with the structural damping, the calculated scale factor for this case
is simply

o [wes |
% D,5 81,M
C (7)
% .\ [oLa BLs
% ® s 81,A

~ o~ AN
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Since the structural damping coefficients for the models have been
observed to vary with the amplitude of the oscillation (see fig. 2), the
scale factor will also vary with the magnitude of the buffeting loads.

These three relationships (aerodynmnic and structural damping,
eq. (4); aerodynamic demping only, eq. (6); and structural damping only,
eq. (7)) will be used subsequently in a discussion of the validity of
some of the assumptions required in their development.

RESULTS AND DISCUSSION

The data of the present investigation are presented in summary
form in figure 6 where the root-mean-square bending moments measured
for each of the models are plotted as functions of velocity for angles
of attack from 0° to 20°. Examination of figure 6 permits a few general
observations.

The root-mean-square bending moments increase rapidly with velocity
in a somewhat erratic manner; that is, they do not vary in a simple expo-
nential relationship as would be indicated by straight lines on the
logarithmic plot. This result can be expected when it is realized that
several of the important buffeting parameters such as Mach number and
reduced frequency vary with the velocity. In order to examine the
effects of stiffness on the results it will be necessary to make com-
parisons between the three models at the same values of velocity and
angle of attack.

=20

Accordingly, the measured values of buffeting losds for the magne-
sium and aluminum models at selected values of velocity and angle of
attack are plotted against the calculated values for these same condi-
tions in figure 7. Figure 7 contains three parts wherein the calculated
values were obtained by the three relations discussed in the section
"Method of Analysis." The calculated values in figure 7(a) were obtained
by use of equation (4) including aerodynamic and structural damping
whereas figures T(b) and T(c) refer to calculated values obtained from
the relationships for aerodynamic damping only and structural damping
only. Plotting the data in this manner permits an examination of the
accuracy with which the relationships can be used to extrapolate from

the buffeting loads measured on the stiff steel wing to those to be
expected for the more flexible aluminum and magnesium. Although there
are other factors involved, this extrapolation from a stiff wing to a
flexible wing is roughly comparable to the extrapolation of buffeting
loads from wind-tunnel model results to those for an airplane in flight.

Examination of figure T reveals several interesting results. The
use of the complete expression including both aerodynamic and structural
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damping results in extrapolated values of buffeting loads which are

about 25 percent too large at the higher levels of buffeting. The use

of the relation for aerodynemic damping only, which, of course, is not

as exact within the framework of assumptions as the more complete expres-
sion, yields extrapolated values of the loads which agree very well with
the measured loads. The values calculated by use of the expression for
structural damping are high by a factor of about 2.

The discrepancy between measured and extrapolated buffeting loads
for the case where both aerodynamic and structural damping are considered
could be due to either or both of the possible phenomena mentioned pre-
viously - namely, a nonlinearity of the aerodynamic damping or an alter-
ation of the exciting force caused by the motion of the wing during
buffeting.

Examination of the data suggests a speculative explanation of this
behavior. The point of view is taken that buffeting is due to the forces
generated by randomly shed vortices which, in turn, are associated with
the shearing action of the separated boundary layer. If this concept is
applied to a very flexible 1lifting surface, it would seem that the motion
of the surface might tend to decrease the strength of the vorticity pro-
ducing the motion. In other words, the tendency of the flexible wing to
move with the driving force might tend to reduce those forces relative to
the forces acting on a rigid or nonmoving surface. These arguments are
supported to some extent by the data shown in figure 7 when it is observed
that the linear theory seems to apply better at low buffeting levels and
seems to predict somewhat more accurately the buffeting loads for the
more rigid aluminum wing than it does for the magnesium wing.

The question of the importance of this relieving effect in the
extrapolation of buffeting loads measured on relatively stiff wind-tunnel
models to those to be expected on an airplane in flight must consider the
current "state of the art" of buffeting predictions. The indications of
the present investigation are that extrapolation based on the calculated
relationships including both aerodynamic and structural damping might be
.conservative by about 25 percent. Such a prediction probably still would
be superior to predictions available only a few years ago. On the other
hand, a prediction based on aerodynamic damping only, which apparently
contains compensating inaccuracies, would provide an even closer approx-
imation at least for the conditions considered in this investigation.
Furthermore, such extrapolation would require knowledge only of certain
geometric and elastic properties and operating conditions. The actual
values of the coefficient of aerodynamic damping which, in general, are
not available and are difficult to obtain are not required.
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CONCLUDING REMARKS

An examination of the validity of some of the assumptions used in
the analysis of buffeting loads has been made by means of wind-tunnel
tests of models differing in stiffness. A linear analysis predicts
buffeting loads which are high by about 25 percent. This difference
may be associated with a relieving effect which causes flexible wings
to generate smaller buffeting forces than a more rigid wing. A predic-
tion based on aerodynamic damping only, which apparently contained com-
pensating inaccuracies, provided values of buffeting loads which were
closer to the measured values than those predicted by the more complete
analysis including both structural and aerodynamic damping.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., March 17, 19509.
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APPENDIX A

DERIVATION OF EQUATIONS GOVERNING
BUFFET RESPONSE OF A WING

By Don D. Davis, Jr.

In deriving the buffet equations, the procedure will be to determine
the normal modes of the wing, to set up the equation for a steady-state
forced vibration by Lagrange's method, to solve this equation in order
to determine the admittance of the vibrating system, and then to apply
the methods of generalized harmonic analysis to determine the response
of the system to a random (buffet) input.

The normal modes of vibration can be determined from the structural
characteristics of the wing as described by certain matrices. (See
refs. 9, 10, or 11.) For analysis, the wing is divided into a suitable
group of elements, each of which is associated with a particular point
in the plane of the wing. The elastic properties of the wing are con-
tained in a square matrix of flexibility-influence coefficients, which
can be determined by analysis of the structure or by direct measurement.

If {P} is a set of static loads and {z} is a corresponding set of

displacements, then

{z}= [2]{7}

where [A] is the matrix of flexibility-influence coefficients. The

inertia properties of the wing are described by a diagonal matrix, each
element of which is the mass associated with an element of the wing.

This matrix is denoted by [ M ]. The matrix [U] - [a] [M] is cellea

the dynamic matrix.

The matrix equation

(}- 21}

is solved to obtain the frequencies and shapes of the normal modes of
vibration (ref. 10, p. 169). The frequency of the nth mode will be

oo
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written w, and the column matrix containing the associated normalized

set of deflections will be written {?(n)}.

The displacement of the mth element of the vibrating wing can be
written in terms of a series utilizing the normal modes:

%y = EZ rn¢£n)

n

~

where the terms r, are functions of time. The kinetic energy of the
vibrating system is then (ref. 10)

where

2
My = }: mm<§é?)

m

and the terms my are the elements of the inertia matrix [M]. The
elastic strain energy E is (refs. 10 and 11)

2 2
E = 5 Z oy “Mpry
n

These expressions for the kinetic and potential energies, when inserted
in Lagrange's equation, yield the equation of motion for the nth modes:.

Mpry + wngMnrn = }Z Ph@éé) (A1)

m

where P, represents the forces, other than inertial and elastic, that
act on the element m.

The results of several investigations (refs. 5 and 12) have shown
that, in many instances of wing buffet, most of the energy in the power
spectrum of buffet bending moment is concentrated at frequencies in the




16

vicinity of the natural frequency of the first mode. Normally the first
mode is well separated from the higher modes and, as a result, the
response of the higher modes at the first mode frequency is very small.
Attention can be confined, therefore, to a study of the first mode.
Equations (Al) then reduce to the single equation

MF) + o PMyry = Z qu)xgl) (a2)
m

~

One of the forces that contributes to P, is the pressure fluctu-

ation that causes the buffet; this pressure fluctuation is called the
exciting force. The force on element m is Apps, and the corresponding

generalized force on the wing is

1
N = }: Apmsﬁ%£ )

m

It is convenient to define what might be termed a generalized normal-
force coefficient for the first mode:

Ny
where
1
51 = g Sm@é ) (AA)

m

Another force that contributes to Pp 1is the aerodynamic force due

to the motion of the wing. For simple harmonic motion, this force for
an element m of the wing is of the form

anry + bmrl + CmT1

with the corresponding generalized force being

. (1) - (1) (1)
I‘l S—‘ a.mcpm + rl bmcp + CmCPm
L Z vt Z

oommnH
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In this simplified treatment of the buffet phenomena, the first and last
terms of this generalized force are assumed to be negligible in compar-

ison with Ml;l and “ieerlf respectively. Further consideration is
given to the second term, which arises from the aerodynamic forces that

oppose the vertical velocity of each element m. The resulting pressure
difference has the form

Zm km

boy = ~dky 5 = -4 5 T1%

Z
where ?% is an effective angle of attack and k; 1is a constant of the

nature of a local lift-curve slope that depends on the plan form and mode
shape. The minus sign signifies that the pressure opposes the motion.
The corresponding generalized force is

® 2
. ry (1)
-Iir) = -q v z knSm\®Pm >
m

It is convenient to define what might be called a generalized lift-curve

slope for the first mode:
WY
}Z kmsm<@m >

_om
“Iy,1 = Sp (45)
where
2
1
S = Z sm<cp§1 ) (A6)
m
so that
. ry

The equation of motion can now be written as

. - 2 _
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The term Llil is the generalized serodynamic damping force. Structural
damping can be included by adding a term 1gqu?erl (ref. 10, p. 197).
For a sinusoidal force N; = N sin wt the equation of motion is then

MFy + InFy + (14 ig1)epMiry = N osin ot
The steady-state solution of this equation is

__N sin(wt - B)
My 32

2
D 27
1l - w + < 1 + gl>
w12 w3

and B 1is the phase angle by which the displacement

Ly
My
lags the force. For use in generalized harmonic analysis of buffeting,
the square of the absolute value of the admittance is required:

where

7=

lA(w)l2 - (48)
1 - a)2\ E_l_ v g e
w2 ) ( l>

According to the principles of generalized harmonic analysis, the
response of this system to a random input QN(w) is

2
¢rl(w) = Oy(w) ‘A(m) ‘
The mean-square value is given by
— o0 2
r12 = \/; QN(w)IA(w)I dw

In the case of a lightly damped system, the response 1s concentrated
in a narrow frequency band near ay. In that band the response is

approximately

2
or (@) ~ oy(w) |A(0) ]

o O

*
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if the input spectrum is reasonably smooth. Flight-test results (ref. 5)
show that all but a very small part of the response power for a buffeting
wing is found in the frequency band near un and, therefore, the mean-

square response will be approximately

;IE ~ dy(wy) ~j;m ‘A(w)‘edw

This equation cannot be readily integrated in closed form; however, for

small values of structural and aerodynamic damping a satisfactory approx-
imation of the integral gives

—
r< =~ oy(e) WG (49)

na)l

Assume now that a strain gage has been mounted on the wing at any
point that experiences strain fluctuations during first-mode vibratian
of the wing. When the wing vibrates in the first mode, the elongation
sensed by the gage, and hence the gage output, will be directly propor-
tional to the amplitude ry of the vibration. Hence, r; can be deter-
mined with a properly calibrated strain gage. (The case where the wing
is vibrating in several modes is not considered herein. Such a case
involves solutions of the set of equations (Al) rather than of a single
equation of the set.) Thus, the power spectrum @rl(w) and the mean-

2

square value rq“ of the vibration amplitude can be obtained from anal-

ysis of the strain-gage output.

In the case where a wing can be treated as a simple beam, the strain
gages can be calibrated in terms of the beam bending moment, and a rela-
tionship can be derived between the bending moment and the generalized
input force for the first-mode bending of the wing. (See ref. 5.) The
resulting equation for the mean-square bending moment is

—_— (A10)
)

where

, Yo

Ymy M12
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